Document No. HTIS2-PS-COO2 2018-08-18 Rev # **PRODUCT SPECIFICATION** Rechargeable Lithium Ion Cell Model: HTIS2-20700 Document No. HTIS2-PS-COO2 2018-08-18 Rev 0 ## **Revision History** | Date | Originator | Description | |------------|------------|--| | 2018-05-11 | YDLTD | - Original Release of Project COO2 HTIS2 | Document No. HTIS2-PS-COO2 2018-08-18 Rev 0 ### **Contents** | Contents | 3 | |---|---| | 1. General Information | 4 | | 1.1 Scope | | | 1.2 Product Classification | | | 1.3 Model Name | | | | | | 2. Nominal Specification | 4 | | 2.1 Capacity | | | 2.2 Nominal Voltage | | | 2.3.1 Standard Charge | | | 2.3.2 Fast Charge | | | 2.4 Max. Charge Voltage | | | 2.5 Max. Charge Current | | | 2.6.1 Standard Discharge | | | 2.6.2 Fast Discharge | | | 2.7 Max. Discharge Current | | | 2.8 Weight | | | 2.9 Operating Temperature | | | 2.10 Storage Temperature (for shipping state) | | | 3. Appearance and Dimension | 5 | | 3.1 Appearance | | | 3.2 Dimension | | | 4. Performance Specification | 5 | | 4.1 Standard Test Condition | | | 4.2 Electrical Specification | | | 4.3 Environmental Specification | | | 4.4 Mechanical Specification | | | 4.5 Safety Specification | | | 5. Cautions and Prohibitions in Handling | 8 | Lithium Ion HTIS2 20700 3116mAh ### PRODUCT SPECIFICATION Document No. Rev HTIS2-PS-COO2 2018-08-18 0 ### 1. General Information 1.1 Scope: This product specification defines the requirements of the rechargeable lithium ion battery set forth and supplied to end consumer Hohm Tech International 1.2 Product classification: Cylindrical rechargeable lithium ion cell 1.3 Model name: HTIS2 20700 ### 2. Nominal Specification | Item | Condition / Note | Specification | |---------------------------------------|---|--| | 2.1 Capacity (Ah) | Std. charge / discharge | Nominal 3116Ah (C _{nom})
Minimum 3020Ah (C _{min}) | | 2.2 Nominal Voltage | Average for Std. discharge | 3.7V | | 2.3.1 Standard Charge | Constant current | 1500mA (1.5A) | | (Refer to 4.1.1) | Constant voltage | 4.2V | | | End condition (Cut off) | 50mA (.05A) | | 2.3.2 Fast charge | Constant current | 3000mA (3.0A) | | (Refer to 4.1.3) | Constant voltage | 4.2V | | | End condition (Cut off) | 100mA (0.1A) | | 2.4 Max. Charge Voltage | 4.2V charge; 2.5V discharge limit | 4.2V | | 2.5 Max. Charge Current | 1.5C _{nom} [≤ 1C extends cycle life] | 4674mA [4.674A - (1.5C _{nom})]) | | 2.6.1 Standard Discharge | Constant current | 623mA [0.623A - (0.2C _{nom})] | | (Refer to 4.1.2) | End voltage (Cut off) | 2.5V | | 2.6.2 Fast Discharge | Constant current | 15000mA (15A), 30000mA (30A) | | (Refer to 4.1.3) | End voltage (Cut off) | 2.8V | | 2.7 Max. Discharge Current | Continuous; 80°C temperature cut | 30700mA (CC); 41300mA (**) | | 2.8 Weight | Max. | 61.1 ±0.9g | | 2.9 Operating Temperature | Charge | 0 ~ 50 ℃ | | (Cell Surface Temperature) | Discharge | -20 ~ 80 ℃ | | 2.10 Storage Temperature | 1 month | -20 ~ 65 ℃ | | (for shipping state) | 3 month | -20 ~ 50 °C | | · · · · · · · · · · · · · · · · · · · | 1 year | -20 ~ 25 ℃ | ^{*}Test and Shipping Data: 556 random sample method - 42-45% of fully charged state. ** 2.7 Max. Discharge Current until =80℃ or 2.8V 2.7 Cont. Cycle Life reduced at high rates. Notice: 47100mA 5s/30s [I/O] DC test PASS. Document No. Date 2018-08-18 Rev 0 HTIS2-PS-COO2 ### 3. Appearance and Dimension ### 3.1 Appearance There shall be no such defects as a single deep scratch, crack, rust, discoloration or leakage, which may affect the commercial value of the cell. ### 3.2 Dimension Diameter 20.25 ± 0.15mm Diameter is defined as the largest data value measured on the "A" area of a cylindrical cell. Height 70.0 ± 0.15mm ### 4. Performance Specification ### 4.1 Standard test condition ### 4.1.1 Standard Charge Unless otherwise specified, "Standard Charge" shall consist of charging at constant current of 1500mA. The cell shall then be charged at constant voltage of 4.2V while tapering the charge current. Charging shall be terminated when the charging current has tapered to 50mA. For test purposes, charging shall be # Lithium Ion HTIS2 20700 3116mAh ### PRODUCT SPECIFICATION Document No. HTIS2-PS-COO2 2018-08-18 Rev performed at 23°C ± 2°C. ### 4.1.2 Standard Discharge "Standard Discharge" shall consist of discharging at a constant current of 623mA to 2.5V. Discharging is to be performed at 23 $^{\circ}$ C \pm 2 $^{\circ}$ C unless otherwise noted (such as capacity versus temperature). ### 4.1.3 Fast Charge / Discharge condition Cells shall be charged at constant current of 3000mA to 4.2V with end current of 100mA. Cells shall be discharged at constant current of 15000mA and 30000mA to 2.8V. Cells are to rest 10 minutes after charge and 30 minutes after discharge. ### 4.2 Electrical Specification | Condition | Specification | |---|---| | Cell shall be measured at 1kHz after charge per | \leq 20 $m\Omega,$ without PTC | | 4.1.1. | | | Cell shall be charged per 4.1.1 and discharged | 3116 mAh (C _{nom}) | | per 4.1.2 within 1h after full charge. | | | Cells shall be charged and discharged per 4.1.3, | \geq 70% (of C _{nom} in 2.1) | | 300 cycles(15A) and 200 cycles(30A). A cycle is | | | defined as one charge and one discharge. 301s | | | (15A) and 201st (30A) discharge capacity shall be | | | measured per 4.1.1 and 4.1.2 | | | | Cell shall be measured at 1kHz after charge per 4.1.1. Cell shall be charged per 4.1.1 and discharged per 4.1.2 within 1h after full charge. Cells shall be charged and discharged per 4.1.3, 300 cycles(15A) and 200 cycles(30A). A cycle is defined as one charge and one discharge. 301s | ### 4.3 Environmental specification. | Item | Condition | Specification | |---|---|---| | 4.3.1 Storage Characteristics | Cells shall be charged per 4.1.1 and stored in a temperature-controlled environment at 23°C ± 2°C for 30 days. After storage, cells shall be discharged per 4.1.2 to obtain the remaining capacity*. | Capacity recovery rate \geq 90% (of C _{nom} in 2.1) | | 4.3.2
High Temperature
Storage Test | Cells shall be charged per 4.1.1 and stored in a temperature-controlled environment at 60°C for 1 week. After storage, cells shall be discharged per 4.1.2 and cycled per 4.1.1 and 4.1.2 for 3 cycles to obtain recovered capacity*. | No leakage, Capacity recovery rate ≥ 80% (of C _{nom} in 2.1) | ^{*} Remaining Capacity: After storage, cells shall be discharged with standard condition (4.1.2) to measure the remaining capacity. ** Recovery Capacity: After storage, cells shall be discharged with standard discharge condition (4.1.2), and then cells shall be charged with standard discharge condition (4.1.2). This above the discharged with standard discharge condition (4.1.2). standard charge condition (4.1.1), and then discharged with standard discharge condition (4.1.2). This charge / discharge cycle shall be repeated three times to measure recovery capacity. # HOHMTECH Description Lithium Ion HTIS2 20700 3116mAh ### PRODUCT SPECIFICATION Document No. 2018-08-18 Rev 0 HTIS2-PS-COO2 | 4.3.3 | 65°C (8h) ← 3l | No leakage | | | |--------------------|--------------------|------------------------------------|---|--| | Thermal Shock Test | with cells charge | ed per 4.1.1 After test, cells are | Capacity recovery rate | | | | | 4.1.2 and cycled per 4.1.1 and | \geq 80% (of C _{nom} in 2.1) | | | | 4.1.2 for 3 cycles | s to obtain recovered capacity. | | | | 4.3.4 | Cells shall be cl | | | | | Temperature | and discharged | | | | | Dependency of | temperatures. | temperatures. | | | | Capacity | Charge | Discharge | Capacity | | | | | -10℃ | 60% (of C _{nom} in 2.1) | | | | | 0.0 | 80% (of C _{nom} in 2.1) | | | | 23℃ | 23℃ | 100% (of C _{nom} in 2.1) | | | | | 60°C | 93.5% (of C _{nom} in 2.1) | | ### 4.4 Mechanical Specification | Item | Condition | Specification | |----------------|---|-----------------------| | 4.4.1 | Cells charged per 4.1.1 are dropped onto an oak board | No leakage | | Drop Test | from 1 meter height for 1 cycle, 2 drops from each cell | No temperature rising | | | terminal and 1 drop from side of cell. (Total number of | | | | drops =3). | | | 4.4.2 | Cells charged per 4.1.1 are vibrated for 90 minutes per | No leakage | | Vibration Test | each of the three mutually perpendicular axes (x, y, z) | | | | with total excursion of 0.8mm, frequency of 10Hz to | | | | 55Hz and sweep of 1Hz change per minute. | | ### 4.5 Safety Specification | Item | Condition | Specification | |--|---|--| | 4.5.1
Overcharge Test | Cells are discharged per 4.1.2, then charged at constant current of 3 times the max. charge condition and constant voltage of 4.2V while tapering the charge current. Charging is continued for 7 hours (Per UL1642). | | | 4.5.2 External Short - Circuiting Test | Cells are charged per 4.1.1, and the positive and negative terminal is connected by a 100 m ℚ-wire for 1 hour (Per UL1642). | The same of sa | Impact Test Crush Test 4.5.6 ### PRODUCT SPECIFICATION Document No. 2018-08-18 Rev No explosion, No fire No explosion, No fire Lithium Ion HTIS2 20700 3116mAh HTIS2-PS-COO2 | 4.5.3
Overdischarge
Test | Cells are discharged at constant current of 0.2C to 250% of the minimum capacity. | No explosion, No fire | |--------------------------------|---|-----------------------| | 4.5.4
Heating Test | Cells are charged per 4.1.1 and heated in a circulating air oven at a rate of 5°C per minute to 130°C. At 130°C, oven is to remain for 10 minutes before test is discontinued (Per UL1642). | No explosion, No fire | | 4.5.5 | Cells charged per 4.1.1 are impacted with their longitudinal axis parallel to the flat surface and | No explosion, No fire | perpendicular to the longitudinal axis of the 15.8mm Cells charged per 4.1.1 are crushed with their longitudinal axis parallel to the flat surface of the ### 5. Caution and Prohibition in Handling Warning for using the lithium ion rechargeable battery. Mishandling of the battery may cause heat, fire and deterioration in performance. Be sure to observe the following. ### Caution - When using the application equipped with the cell(s), refer to the user's manual before use. - Please read the specific charger manual before charging. - If cell is not charged with long exposure to the charger, discontinue charging. - Cell must be charged at operating temperature range 0 ~ 50 $^\circ\!\mathrm{C}.$ diameter bar (Per UL1642). crushing apparatus (Per UL1642). - Cell must be discharged at operating temperature (cell surface temperature) range -20 ~ 80 $^{\circ}\mathrm{C}$. - Please check the positive (+) and negative (-) direction before packing. - When a lead plate or wire is connected to the cell for packing, check out insulation not to short-circuit. - Cell must be stored separately. - Cell must be stored in a dry area with low temperature for long-term storage. - Do not place the cell in direct sunlight or heat. - Do not use the cell in high static energy environment where the protection device can be damaged. - If rust or smell is detected on first use, please return the product to the seller immediately. - The cell must be kept away from children and pets. - When cell life span shortens after repeated use, replace with new cells. Document No. HTIS2-PS-COO2 2018-08-18 Res O ### **Prohibitions** - Do not use charger that is not specifically for lithium ion batteries. - Do not use cigarette jacks (in cars) for charging. - Do not charge with constant current more than maximum charge current. - Do not disassemble or reconstruct the battery. - · Do not throw or cause impact. - Do not pierce a hole in the cell with sharp things. (such as nail, knife, pencil or drill, etc.) - Do not use with other model, brand, or size of battery - Do not solder on cell directly. - Do not press the cell with overload in manufacturing process, especially ultrasonic welding. - Do not use old and new cells together for packing. - Do not expose the battery to high heat. (such as fire) - Do not put the cell into a microwave or high pressure container. - Do not use the cell with reversed polarity - Do not connect positive(+) and negative(-) with conductive materials. (such as metal, wire) - Do not allow the battery to be immerged in or wetted with water or sea-water. - Do not use if label wrap covering battery has any tears or punctures. - Do not use in applications that are not equipped with a BMS (battery management system). - Do not build or use a lithium battery pack without consulting a certified pack assembler. - Do not exceed specifications of cell output or charging input limitations. ANY QUESTIONS REGARDING USE OF, HANDLING OF, OR RECYCLING OF LITHIUM ION BATTERIES, VISIT THE FOLLOWING RESOURCES: http://batteryuniversity.com/ https://www.call2recycle.org/locator/